

for a greener tomorrow

HOT WATER HEAT PUMP

HOT WATER HEAT PUMP

Air Source Heat Pump

Model

QAHV-N560YA-HPB(-BS)

QG2

MITSUBISHI ELECTRIC'S HOT WATER HEAT PUMP SERIES, QAHV, Our solution to hot water supply for commercial &

industrial applications

As a leading manufacture of air-to-water heat pumps, we have developed QAHV, the latest innovation in Mitsubishi Electric's comprehensive lineup of Hot Water Heat Pump products. QAHV has been specifically designed to produce high volume hot water and is suitable for commercial and industrial application where hot water demand is high. By adopting the Mitsubishi Electric's unique technology, QAHV can ensure highly reliable performance as well as high heating capacity even at low outdoor temperatures.

Main features of QAHV

- 1) Utilizes natural refrigerant (CO₂)
- 2) High efficiency (Achieved COP 3.88 *1)
- 3) Supplies high temp. hot water of up to 90°C *2
- 4) Operable even at low outdoor temp of -25°C
- *1 Under normal heating conditions at outdoor temp:16°CDB/12°CWB, inlet water temp 17°C, outlet water temp 65°C
- *2 Maximum outlet hot water temp on secondary side is 80°C.

Why is CO₂ (R744) used?

QAHV adopts CO₂ (R744) as a refrigerant, environment-friendly natural refrigerant, which does not destroy the ozone layer (ODP=0) and has significantly low global warming potential (GWP=1). With the natural refrigerant, QAHV can contribute to the reduction of CO₂ emissions. *ODP: Ozone Depletion Potential, GWP: Global Warming Potential

High energy saving with our unique technology

QAHV utilizes a twisted & spiral gas cooler which is Mitsubishi Electric's unique technology. The 3 connected refrigerant pipes are wound around the twisted water pipe, which maximizes heat transfer. The continuous spiral grooves in the twisted pipe accelerates the turbulence effect of water and also helps to reduce pressure loss within the heat exchanger which contribute to enhance efficiency.

Equipped with the latest inverter scroll compressor, QAHV can significantly increase the annual efficiency which fixed speed systems can not match.

Twisted & spiral gas cooler

refrigerant

High

efficiency

Bringing a year round hyper heating capacity to extreme climate

QAHV is able to provide full heating capacity even at ambient temperatures of -3°C. Furthermore, the unit is operable and can supply 90°C^{*1} hot water in ambient temperatures as low as -25°C. The technology behind this is an injection circuit which provides optimum amount of refrigerant to the system via a compressor through a specially designed injection port to ensure a particularly stable operation. *¹Maximum outlet hot water temp on secondary side is 80°C.

may occur. Such water cannot be used in a system in which water is directly *2 Must be procured locally.

Optional Parts for QAHV

Optional Parts

Description	Image	Model name
1 Remote Controller		PAR-W31MAA-J
2 Representative water temperature sensor		TW-TH16-E
Secondary circuit kit *1 (Temperature sensor, Flow sensor)		Q-1SCK

By incorporating the secondary circuit control to the QAHV, the need to assemble a pump control on site is eliminated. This has simplified the system configuration in which the amount of water used exceeds the Water Quality Standards for QAHV. ^{*1} For more detailed information, please refer to DATA BOOK. The pump control system on the load side needs to be installed on site.

Specifications

Model			QAHV-N560YA-HPB(-BS)	
Power Source			3-phase 4-wire 380-400-415V 50Hz	
Capacity *1		kW	40	
		kcal/h	34400	
		Btu/h	136480	
	Power input	kW	10.31	
	Current input	A	17.8-16.9-16.3	
	COP (kW/kW)		3.88	
Capacity *2		kW	40	
		kcal/h	34400	
		Btu/h	136480	
	Power input	kW	10.97	
	Current input	A	20.0-19.0-18.3	
	COP (kW/kW)		3.65	
Capacity *3 kW		kW	40	
		kcal/h	34400	
		Btu/h	136480	
	Power input	kW	11.60	
	Current input	A	20.4-19.4-18.7	
	COP (kW/kW)		3.44	
Maximum current input		A	33.80	
Allowable external pump head	· · · · · · · · · · · · · · · · · · ·		77kPa	
	Inlet water temp		5~63°C	
			41~145.4°F	
Temperature range	Outlet water temp		55~90°C (Secondary side control enabled: 55 to 80°C)	
	•	1	131~194°F (Secondary side control enabled: 131 to 176°F)	
	Outdoor temp	D.B.	-25~43°C	
Sound Proceuro lovel			-13~109.4 F	
(measured 1m below the unit in an apechoic room) *1		dB (A)	56	
		mm (in.)	19.05 (Rc 3/4"), screw pipe	
Water pipe diameter and type	Outlet	mm (in.)	19.05 (Rc 3/4"), screw pipe	
External finish			Acrylic painted steel plate	
External dimension H x W x D		mm	1837 (1777 not including leas) x 1220 x 760	
		in.	72.3 (69.9 not including legs) x 48.0	
Net weight		kg (lbs)	400 (882)	
	R744	MPa	14	
Design Pressure	Water	MPa	0.5	
Heat exchanger	Water-side		Copper tube coil	
	Air-side		Plate fin and copper tube	
Compressor	Туре		Inverter scroll hermetic compressor	
	Maker		MITSUBISHI ELECTRIC CORPORATION	
	Starting method		Inverter	
	Motor output	kW	11.0	
	Case heater	kW	0.045	
	Lubricant		PAG	
FAN		m³/min	220	
	Air flow rate	L/s	3666	
		cfm	7768	
	Type x Quantity		Propeller fan	
	Control, Driving mechanism		Inverter-control, Direct-driven by motor	
	Motor output kW		0.92	
HIC (HIC: Heat inter-changer) circuit			Copper pipe	
High pressure prote		1	High pres.Sensor & High pres.Switch at 14MPa (643psi)	
Destaution	Inverter circuit		Overheat and overcurrent protection	
Protection	Compressor		Overheat protection	
	Fan motor		Thermal switch	
Defrosting method			Auto-defrost mode (Hot gas)	
Refrigerant	Type x original charge		R744 x 6.5	
	Flow and temperature control		LEV	

Notes:

*1.Under Normal heating conditions at the outdoor temp, 16°CDB/12°CWB (60.8°FDB/53.6°FWB), the outlet water temperature 65°C (149°F), and the inlet water temperature 97°C (62.6°F) *2.Under Normal heating conditions at the outdoor temp, 7°CDB/6°CWB (44.6°FDB/42.8°FWB), the outlet water temperature 65°C (149°F), and the inlet water temperature 9°C (48.2°F) *3.Under Normal heating conditions at the outdoor temp, 7°CDB/6°CWB(44.6°FDB/42.8°FWB), the outlet water temperature 65°C (149°F), and the inlet water temperature 9°C (48.2°F) *3.Under Normal heating conditions at the outdoor temp, 7°CDB/6°CWB(44.6°FDB/42.8°FWB), the outlet water temperature 65°C (149°F), and the inlet water temperature 15°C(59.0°F) *Due to continuing improvements, specifications may be subject to change without notice

*Do not use steel pipes as water pipes.

*Keep the water circulated at all times. Blow the water out of the pipes if the unit will not be used for an extended period time.

*Do not use ground water or well water

*Do not install the unit in an environment where the wet bulb temperature exceeds 32°C

*The water circuit must use the closed circuit

*There is a possibility that the unit may abnormally stop when it operates outside its operating range. Provide backup

(ex.boiler start with error display output signal (blue CN511 1-3)) for abnormal stop.

MITSUBISHI ELECTRIC CORPORATION

www.MitsubishiElectric.com

Unit converter kcal/h = kW x 860 BTU/h = kW x 3,412 cfm = m³/min x 35.31 lbs = kg/0.4536